Dynamic Control Of Plans With Temporal Uncertainty

Content Areas: temporal reasoning, reasoning under uncertainty, constraint satisfaction, planning
Tracking Number: 636

Abstract

Certain planning systems that deal with quantitative
time constraints have used an underlying Simple
Temporal Problem solver to ensure temporal con-
sistency of plans. However, many applications in-
volve processes of uncertain duration whose timing
cannot be controlled by the execution agent. These
cases require more complex notions of temporal
feasibility. [n previous work, various “controlla-
bility™ properties such as Weak, Strong, and Dy-
namic Controllability have been defined. The most
interesting and useful Controllability property, the
Dynamic one, has ironically proved to be the most
ditficult to analyze. In this paper, we resolve the
complexity issue for Dynamic Controllability. Un-
expectedly, the problem turns out to be tractable.
We also show how to efficiently execute networks
whose status has been verified.

1 Introduction

Simple Temporal Networks [Dechter er al, 1991] have
proved useful in planning and scheduling applications that in-
volve quantitative time constraints (e.g. [P.Laborie and Ghal-
lab, 19935; Muscettola er al., 1998b]) because they allow fast
checking of temporal consistency. However this formalism
does not adequately address an important aspect of real exe-
cution domains: the occurrence time of some events may not
be under the complete control of the execution agent. For
example, when a spacecraft commands an instrument or in-
terrogates a sensor, a varying amount of time may intervene
before the operation is completed. In cases like this, the exe-
cution agent does not have freedom to select the precise time
delay between events in accord with the timing of previously
executed events. Instead, the value is selected by Nature inde-
pendently of the agent’s choices. This can lead to constraint
violations during execution even if the Simple Temporal Net-
work appeared consistent at plan generation time.

The problem of constraint satisfaction for temporal net-
works with uncertainty was first addressed formally in [Vidal
and Ghallab, 1996; Vidal and Fargier, 1999]. In this setting,
the question of temporal feasibility goes beyond mere con-
sistency to encompass issues of “controllability.” Essentially,
a network is controllable if there is a strategy for executing

the timepoiats under the agent’s control that satisfies all re-
quirements, including those involving the uncontrolled time-
points. The previous work has identified three primary levels
of controllability. In Strong Controllability, there is a static
control strategy that is guaranteed to work in all cases. In
Weak Controllability, for all situations there is a “clairvoy-
ant” strategy that works if all uncertain durations are known
when the network is executed. The most interesting control-
lability property from a practical point of view is Dynamic
Controllabilitv, where it is assumed that each uncertain du-
ration becomes known (is observed) after it has finished, and
the property requires a successful strategy that depends only
on the past outcomes.

In previous work, algorithms have been presented for
checking Strong and Weak Controllability, and Strong Con-
trollability has been shown to be tractable, while Weak
Controllability is co-NP-complete [Vidal and Fargier, 1999,
Morris and Muscettola, 1999]. However, Dynamic Control-
lability has proved difficult to analyze, primarily because of
a time asymmetry where a control decision may depend on
the past but not on the future. In this paper we present effi-
cient constraint propagation methods for checking Dynamic
Controllability. These explicitly add constraints that are im-
plicit in the Dynamic Controllability property. With these
additional constraints, Dynamic Controllability checking re-
duces to a form of consistency checking that turns out to be
polynomial. The derived constraints are also used to guide an
effective execution strategy.

2 Background

We review the definitions of Simple Temporal Net-
work [Dechter ef al., 1991], and Simple Temporal Network
with Uncertainty [Vidal and Fargier, 1999].

A Simple Temporal Network (STN) is a graph in which the
edges are labelled with upper and lower numerical bounds.
The nodes in the graph represent temporal events or fime-
points, while the edges correspond to constraints on the du-
rations between the events. Formally, an STN may be de-
scribed as a 4-tuple < N, E,l,u > where N is a set of
nodes, E is a set of edges, and ! : £ - R U {-oc} and
u: E — RU {+oo} are functions mapping the edges into
extended Real Numbers, that are the lower and upper bounds
of the interval of possible durations. Each STN is associated
with a distance graph [Dechter et al., 1991] derived from the

~
»

upper and lower bound constraints. An STN s consistent if
and oaly if the distance graph does not contain a negative
cycle, and this can be determined by a single-source shortest
path propagationsuch as in the Beliman-Ford algorithm [Cor-
men ef al., 1990]. To avoid confusion with edges in the dis-
tance graph, we will refer to edges in the STN as links.

A Simple Temporal Network With Uncertainty (STNU)
is similar to an STN except the links are divided into two
classes, contingent links and requirement links. Contingent
links may be thought of as representing causal processes of
uncertain duration; their finish timepoints, called contingent
timepoints, are controlled by Nature, subject to the limits im-
posed by the bounds on the contingent links. All other time-
points, culled executable timepoints, are controlled by the
agent, whose goal is to satisty the bounds on the requirement
links. We assume the durations of contingent links vary inde-
pendently, so a control procedure must consider every com-
bination of such durations.

Thus, an STNU is a S-tuple < N, E,l,u,C >, where
N, E L uare as in a STN, and C is a subset of the edges:
the contingent links, the others being requirement links. We
require 0 < [(e) < u(e) < oc for each contingent link e.

An STNU may be regarded as an STN by ignoring the dis-
tinction between contingent links and requirement links. This
allows us to apply STN terminolgy and concepts, such as All-
Pairs shortest-path calculations, to STNUs.

In addition, choosing one of the allowable durations for
each contingent link may be thought of as reducing the STNU
to an ordinary STN. Thus, an STNU determines a family of
STNs, as in the following definition.

Suppose I' = < N, E,[,u,C > is an STNU. A projec-
tion [Vidal and Ghallab, 1996] of T is a Simple Temporal
Network derived from [where each requirement link is re-
placed by an identical STN link, and each contingent link e is
replaced by an STN link with equal upper and lower bounds
(b, bj for some b such thatI(e) < b < u(e).

Givena fixed STNU < N, E | [, u,C >, a schedule T is a
mapping

T:N->R
where T'(z) (sometimes written T) is called the time of time-
point x. A schedule is consisrent if it satisfies all the link
constraints. From a schedule, we can determine the durations
of all contingent links that finish prior to a timepoint z. (This
may be viewed as a partial mapping from C to R.) We call
this the prehistory of £ with respect to T, denoted by T..

Then an execution strategy S is a mapping

S:P-=>T
where P is the set of projections and 7 is the set of schedules.
An execution strategy S is viable if S(p) is consistent for each
projection p.

We are now ready to define the various types of controlla-
bility, essentially following [Vidal, 2000].

An STNU is Weakly Controllable if there is a viable execu-
tion strategy. This is equivalent to saying that every projection

is consistent.
An STNU is Strongly Controllable if there is a viable exe-

cution strategy S such that
(S(1)l= = [S(p2)l=

for each executable timepomt .« and projections pl and pl.
Thus, a Strong exceution strategy assigns a fixed time to each
exceutahle timepoint irrespective of the outcomes of the con-
tngent links.

An STNU is Dyuamically Controllable if there is a viable
execution strategy S such that

(V)] <z = [Sp2)] e = [Spl)]e = [S(P2)e

for each executable timepoint & and projections pl and p2.
Thus, a Dynamic execution strategy assigns a time to each
executable timepoint that may depend on the outcomes of
contingent links in the past, but not on those in the future
(or present). This corresponds to requiring that only informa-
tion available from observation may be used in determining
the schedule.

Networks where two contingent links have the sume finish-
ing point are clearly not Dynamically Controllable. Because
of this, and for certain technical reasons (as in [Morris and
Muscettola, 2000]), we will exclude such networks in the re-
mainder of this paper.

[t is easy to see from the definitions that Strong Controtla-
bility implies Dynamic Controllability, which in turn implies
Weak Controllability. Thus, the Dynamic property s interme-
diate between the properties of Weak and Strong Controllabil-
ity. Strong Controllability is known to be tractable and Weak
Controllability is known to be co-NP-complete. In this paper,
we investigate the status of Dynamic Controllability. Note
that a naive algorithm for checking this property is hyperex-
ponential since it requires searching for an execution strategy
that is both dynamic and viable, while a method described
in [Vidal, 2000] requires worst case exponential space. We
will use dvnamic straregy in the following for a Dynamic ex-
ecution strategy.

The following terminology will be useful in the subsequent
discussion. A contingent link is squeezed if the other con-
straints (including the other contingent links) imply a strictly
tighter lower bound or upper bound for the link. An STNU is
pseudo-controllable if it is consistent and none of the contin-
gent links are squeezed.

If a network is pseudo-controllable then all the edges aris-
ing from contingent links are shortest paths. Thus, the con-
tingent links survive unchanged in the AllPairs shortest-path
graph (abbreviated as the AllPairs graph). Note that pseudo-
controllability can be determined in polynomial time by com-
puting the AllPairs graph.

It is easy to see that every Weakly Controllable network is
pseudo-controllable since a squeezed contingent link would
imply a projection that is not consistent. However, the con-
verse is not true in general.

Even for a STNU that was originally pseudo-controllable,
it is possible for a contingent link to be squeezed during ex-
ecution (which may be viewed as augmenting the network
with additional constraints). In this paper, we will make use
of results from [Morris and Muscettola, 2000]. These guar-
antee that a contingent link cannot be squeezed during execu-
tion under certain circumstances. Essentially, upper bounds
can only be squeezed by propagations that use links with
non-negative upper bounds, and lower bounds can only be
squeezed by propagations that use links with positive lower

»

bounds. Even in these cases, squeczing cannot oceur if the
relevant bound s dominated by that ot the contingent link.
Dominance can be tested by a simple Triangle Rule. The
tightenings considered n this paper have the nice property
that they lead to the Triangle Rule being satistied.

3 Triangular Reductions

A starting point for resolving the issue of Dynamic Control-
lability is to consider triangular STNU networks, i.e., net-
works involving three timepoints and including a contingent
link, as shown in figure 1. Here AC is a contingent link with
bounds {z. y|, while AB and BC are requirement links with
bounds {p, q! and {u, v] respectively. This notation for con-
tingent and requirement links will be used in subsequent di-
agrams. The contingent link AC is called the focus of the
triangle. We will also assume that the triangular networks
we consider are pseudo-controllable and have been placed in
AllPairs form, so every edge is a shortest path. It follows that
[u,v] € [z — q,y — p|, which implies [p,q] 2 [y — v,z — u.

A {x. y] c
[p.q] j& (u-vl — Contingent link
B ——> Requirement link

Figure [: Triangular Network

We will derive a number of results concerning additional

tightenings or reductions of the bounds that must be obeyed
by any schedule resulting from a dynamic strategy (i.e., any
S(p) for any projection p, using the notation of the previous
section). These will vary according to cases involving the
signs of the [u, vj bounds.
1. First suppose that v < 0. We call this the Follow case,
since the lower bound of CB (i.e., BC reversed) is —v and
hence B follows C. Then the network is Dynamically Con-
trollable since C has already been observed at the time B is
executed. In fact, it may be executed like an ordinary STN
since any propagation will go from C to B and not vice versa.
(Thus, the network is safe in the sense of [Morris and Muscet-
tola, 2000].) In this case, no tightening is needed.

2. Next consider the case where u > 0. We call this the
Precede case, since B occurs before or simultaneously with
C. Then no information about C is available to B. In this case,
we claim that AB can be tightened to [y — v, T — u]. Suppose
there is a projection p to which a dynamic strategy would map
aschedule T with T ~ T4 < y — v. Since Cisnotin T«
or T4, Tg and T4 cannot depend on AC. Therefore T4 and
Tg are unchanged if the projection is mutated to a projection
p’ where AC equals y. But then we have BC = T¢ - Tg =
(Tc = Ta) - (Tg —T4) > y—(y—v) = v,s0the BC
constraint will be violated. Thus, Tg ~T4 > y—v. Asimilar
argumentshows Tg — T4 < z— u. After the tightening of AB
to [y — v, T — u], the network is safe [Morris and Muscettola,
2000] provided it is still pseudo-controllable. In fact, the BC
link is now dominated by AC.

3. The most interesting case oceurs when a2 Oand v 2 0,
which we call the Unordered case, since B may or may not
follow C. However, suppose B does not follow C and T ~
T\ <y — v:asinthe previous case. the BC constraint might
be violated. We conclude that tor a viable dynamic strategy,
B cannot be exceuted at any time betore y — vatter A if C
has not already occurred. This is a conditional constraint on
AB. depending on the time of occurrence of C. It may also
be viewed as a ternary constraint on AB, and C. which we
call a wair since B must wait until either C occurs or the wait
expires at y — v after A. '

First, there is one subcase for which the condional con-
straint turns out to be unconditional, whichis wheny—v < .
Then C cannot occur betore the wait expires, so we can sim-
ply raise the lower bound of AB to y — v. We will call this
the unconditional Unordered reduction..

In the most general case where £ < y — v, an obvious idea
is to branch on the conditional and consider separately two
cases. First if it turns out that AC < y — v (in which case
C occurs first and B follows), the network is safe if pseudo-
controllable as in the Follow case. Otherwise if AC >y — v
(in which case AB > y — v also), the network can be veri-
fied to be safe if pseudo-controllable by an application of the
Triangle Rule for dominance [Morris and Muscettola, 2000].
Observe that in either case B occurs folowing z after A, so
without branching on the cases we can raise the lower bound
of AB to x. We will call this the incomplere Unordered re-
duction.

Please notice that the general (conditional or not) Un-
ordered reduction can be summarized as: raise the lower
bound of AB to min(z.y - v).

We see above that assuming a dynamic strategy may lead
to a reduction of the constraint bounds. If the reduction pro-
duces a violation of pseudo-controllability, then the original
network was not Dynamically Controllable. On the other
hand, if the network remains pseudo-controllable after the re-
duction (in the Unordered case we must verify this for both
subcases), then the triangular network is safe and thus Dy-
namically Controllable {Morris and Muscettola, 2000]. Thus,
the reductions give a procedure for determining Dynamic
Controllability of triangular networks.

4 Local vs Global Dynamic Controllability

To test a general STNU network for Dynamic Controllability,
we can construct the AllPairs graph, which may be regarded
as a combination of triangular subnetworks. Triangles that
involve a contingent link may be viewed as instances of fig-
ure 1. If a triangle contains two contingent links,' then we
consider it twice, with each contingent link in turn playing
the role of focus, and the other being treated as a require-
ment link. Any reduction propagates to neighbour triangles
until quiescence of the network is reached. The only problem
arises with Unordered cases: if we branch on the conditionals
as discussed in the previous section, we end up with a combi-
natorial search, which we prefer to avoid. Instead we use the

"Triangles with three contingent links cannot occur since we ex-
clude coincident tinishing points. ~

-
0

bare incomplete Unordered and uncoaditional Unordered re-
ductions discussed carlier, so the resulting iterative algorithm
iy deterministic, and polynomial.

This propagation algorithm with no scarch may be viewed
as a local Dynamic Controllability checking procedure. Since
it applies to triangles, this s similar to a path-consistency al-
gorithm in a classical constraint network such as a STN. We
will hence call this local property 3-Dynamic Controllubility
and call the resulting algorithm 3DC. As with any local fil-
tering algorithm, the process is sound: if it fails, then at least
one triangle is not Dynamically Controllable and therefore
the whole network is not.

However, it is incomplete as shown by the example in fig-
ure 2. We invite the reader to verify that the triangles are
all quiescent under the deterministic reductions considered
above, therefore the network is stable under 3DC. Moreover,
this example is also Weakly Controliable as can be seen by
enumerating the cycles and considering the worst case pro-
jection for each cycle.

A _[2' 4..]_> C
(0. 1] (3.1
[2.4]
o1 P——B
(0. 1]
3.4
E—C3 o F

Figure 2: Quiescent non-DC Network

Now consider the subnetwork ACDB. It is not difficult to
see that a dynamic strategy requires AD = 1. Similarly, DE
must be 1. But that causes a violation of the AE link. Hence
the network is not Dynamically Controllable. This exam-
ple also shows that 3DC does not compute the minimal net-
work, i.e., the network in which values not belonging to any
dynamic strategy have been removed (for instance here AD
would be tightened to [1,1]). A reduction approach should
ideally produce this minimality property, which is desirable
for execution purposes.

5 Regression of Waits

The incompleteness of 3DC might suggest we should con-
sider a combinatorial search. However, we have not ex-
hausted the possibilities of obtaining deterministic reductions
from the Unordered cases. If the termary constraint corre-
sponding to the Unordered wait is used directly, then no
branching is necessary. Moreover, this ternary constraint can
be treated somewhat like a binary constraint. Suppose we
have a wait condition that requires B to wait for C until time
t after A. We will indicate that by placinga <C,¢> annota-
tion on the AB link. Note that if it is impossible for C to occur
before t (for example if the lower bound of AC is greater than
t). then the <C,t> wait becomes a true lower bound of t on

AB. This corresponds to the unconditional Unordered reduc-
tion discussed carlier.

Now consider tigure 2 again. The triangle ABC is an Un-
ordered case, so AB recetves a 2C, 3> wait. This is not
unconditional since the lower bound of AC 1s 2. Now con-
sider triangle ADB with this new labet on AB. Suppose C has
not occurred yet and D is executed before | after AL In the
projection where DB equals 2, B will then occur before 3 af-
ter A. [C still has not occurred by then, the wait on AB will
be violated. In other words, the wait on AB can be regressed
through DB to obtain a derived wait on AD. still relative to C:
<C, 1> . This happily is an unconditional wait since C can-
not occur before time 2, which produces a lower bound of 1
on AD, and leads to a resolution of the example. One can no-
tice as well that we get here the hoped-for minimal network.
That leads us to the following general regression paradigm.

Lemma 1 (Regression) Suppose a link AB has a wait
<C,t>, where t < the upper bound of AC. Then (in a sched-
ule resulting from a dynamic strategy):
(i) If there is any link DB (including AB itself) with upper
bound w, then we can deduce a wait <C,t — w> onAD.
(ii) Ift > 0 and if there is a contingent link EB with lower
bound z, then we can deduce a wait <C,t — 2> on AE.

Proof: Consider (i) first. Suppose D occurs before ¢t — w
after A and C has not occurred yet. From the upper bound w
on DB, it follows that B must occur before w+¢ —w = ¢. But
this violates the wait on AB in the projection where C occurs
at its upper bound (which is > t). We conclude that D cannot
occur before t — w after A unless C has already occurred.

Now comsider (ii). If ¢ > 0, then AC must have already
started at the time B occurs. Consequently, we cannot use
information about the outcome of EB to schedule A. Suppose
E occurs before t — 2 after A and C has not occurred yet. In
the projection where EB finishes at z, and AC finishes at its
upper bound, the AB wait will be violated. O

Note that (i) and (ii) are both applicable to contingent links
but (ii) gives a more restrictive (longer) wait.

A [5.9] C
<P, 2>
<R, 2>
D <Q.2> B

Figure 3: Regression Example

Tterated regression amounts 1o a new type of propagation,
where waits are spread to other links. The propagated waits
can be examined for unconditional and incomplete reduc-
tions, which place additional ordinary constraints through-
out the network. For example, consider figure 3. Intuitively,
we can see this is not Dynamically Controllable because the
waits in the worst case will cause an incursion on the AC
lower bound (assuming the upper bounds of AP,AQ, AR are
all at least 2). First we can regress the <R, 2> wait through
AC, which gives a wait of <R, —3> on BA. This gives rise
to (unconditional case) a lower bound of —3 on BA, which

R

pracedury Dyngnveal Dy7 oancallablo™ (nenwork W)

L ompares the ALL Paircs gragh For W:

[t W is not panuds conteollable then coturn false

Select any neouangla such rhat v o ig non negatire,

Larcoduce any tegnranings caquirad by the Pracede —ase

and any wait; ceoqitesad by the Unocdoged nase.

1. Do all possible reqressions of waits . Then introduce
addizional towee bounds as provided by the incaomplerna
cxduction, and asavect uncosnditional wains o lower

bounds
4 [E steps T oand 3 4o aan priduce any new (or tighter

cInsTraints, then renuen Loue, otherwise go to L.

Figure 4: DC Checking Algorithm

is equivalent to an upper bound of +3 on AB. Now we can
regress the <Q,2> wait on DB through AB, which gives a
<Q. -1> on DA, giving rise to a +1 upper bound on AD.
Finally, we regress the <P,2> wait on AD through AD
itself. which gives a <P, 1> wait on AA. Now the incom-
plete reduction ensures a positive lower bound on AA, which
15 a direct inconsistency. Thus, we have reduced the lack of
Dynamic Controllability to a violation of consistency.

6 Dynamic Checking and Execution

We are now ready to introduce the algorithm for determining
Dynamic Controllability, summarized in figure 4. It is just an
enhancement of 3DC with wait regressions and hence is still
a local algorithm, but now we can show it is complete.

Recall that the tightenings have all been justified by the
assumption of a viable dynamic strategy. Thus, if any tight-
ening leads to an inconsistency. we can be confident the orig-
inal network was not Dynamically Controllable. It remains
to prove completeness. We do this by presenting a dynamic
execution algorithm and showing that it is viable if the DC
checking algorithm reports success. For simplicity, we will
assume the execution takes place in the AllPairs graph, al-
though performance could be improved by transforming to a
minimum dispatchable graph as in [Muscettola et al., 1998a].
The execution is essentially the same as for an ordinary STN
except for adding a requirement to respect the waits. For this
purpose, we only consider waits <C,¢t> where ¢ satisfies
{(C) < t £ u(C). Note that waits with ¢t < I(C) are con-
verted to lower bounds, while waits with ¢ > u(C) are equiv-
alent to those with t = u(C). Since [(C') > 0 by definition,
the waits enforced by the algorithm are all positive.

The execution algorithm is shown in figure 5. We assume
there is some start timepoint that is constrained to be before
every other timepoint. (If necessary, one can be added.) In
step 2, a timepoint is live if the current time is within the
timepoint’s bounds. [t is enabled if all timepoints required to
be executed before it (by links with positive lower bounds)
have already been executed [Morris and Muscettola, 2000].

It is clear that this algorithm provides a dynamic strat-
egy since the decisions depend only on the past. The issue
is whether any constraints are violated. Properties of STNs
guarantee that they can be executed incrementally [Muscet-
tola er al., 1998a)]. Therefore, only the special features intro-
duced for STNUs need be considered. The following ate the
possible ways in which the execution could fail.

¢ A deadlock might occur where a wait lasts for ever.

procerdure Exocute {antwock W)

0. Pecform ininial propaqgani.n froam Ehe Shach timepoint.

L tmmedianetly execute any axecurtable Cutepoints
char have reached their upper bounds

I, Arbirrarily pick an execarnable timepoint TP thar
ts Live and 2nabled and aur yen axecutaed., and whose
waits, Lf any, have all keen satisfied.

3. Execute TP. Halt If aetwnrk executisn is complere.
dtherwise, propagate zhe affact of the executisn.

4. Advance cucrent time, prapajating the 2ffect of any
contingent timepoints than occur, until an
executablae timepoint becsmes 2lijibl2 for
execution under 1 or 2.

5. Go to L.

Figure 5: DC Network Execution

e A wait might be forcibly aborted.
e A propagation might squeeze a contingent link.

We can quickly dispose of the deadlock possibility. A dead-
lock would require a cycle of links, each of which is la-
belled with a wait or a positive lower bound. Moreover, the
waits enforced by the execution algorithm are all positive (see
above). But a positive wait implies a positive lower bound by
either the incomplete or the unconditional reduction. Thus,
we would have a cycle where each link has a positive lower
bound. This corresponds to an inconsistency in the network
that would be detected by step | of the DC checking algo-
rithm. The other possibilities are considered in the following

lemmas.

Lemma 2 Suppose a network has successfullv passed the
DC checking algorithm. Then the first failure thar occurs dur-
ing the DC execution cannot be an aborted wai.

Proof: Suppose the first failure is an aborted wait, and the
earliest time this occurs involves a wait <C,#> on a link
AB. As pointed out above, this wait must be positive, so the
link AB will have a positive lower bound. First we note that
B obviously cannot be the start timepoint.

There are now two cases to consider. In the first case, the
wait ts aborted because of an execution required by step 1, of
some timepoint D, which caused the tightening of the upper
bound of DB. Note the regression of <C,t¢> through DB
produces a wait of <C,t — u(DB)> on AD.Ift — u(DB)
is negative, the checking algorithm places it as an uncondi-
tional lower bound on AD. Otherwise, <C,t — u(DB)> is
an earlier wait that is enforced by the execution algorithm. In
either case, AD > t — u(DB). Suppose b and d are the upper
bounds of B and D, respectively, and a is the time of execu-
tionof A. Then (d—a) > (t—u(DB)). Since b = d+u(DB),
it follows that (b — a) > t. This contradicts the assumption
that the wait was terminated.

The remaining case involves the possibility that B is a con-
tingent timepoint, which execution is not controlled by the
agent. Suppose EB is a contingent link with bounds [z, y].
Again we can regress the wait through EB getting <C,t—z>
on AE. Since E is earlier than B, the latter wait must be sat-
isfied. Thus, the duration of AE is greater than ¢ — r. Since
z is the minimum duration of EB, it follows that A is greater
thant — z + x = ¢, i.e., the wait is satisfied after all. O

-~

Lemma 3 Suppose a network has suceessfully passed the
DC cliecking algorithm. Then the first fuilure that occurs dur-
ing DC execution cannot be a squeezing of a contingent link.
Proofl: Suppose the carliest tmfure is the squeezing of a con-
tingent link AC thut has bounds Lr, y]. This must occur dur-
ing a propagation that either raises the lower bound of AC or
lowers the upper bound. However, the triangular reductions
ensure that AC dominates [Muscettola er al., 1998al adjacent
links with tinishing point C except for the case of links BC
with negative lower bound « and non-negative upper-bound
v such that y — v > x, which is the conditional Unordered
case. This meuns the only possibility for a squeezing is an
upper-bound propagation along some such BC. However, the
existence of such a BC would cause the checking algorithm
toplacea <C, y—-v> waiton AB. If C occurs before B then
there is no propagation from B to C. Otherwise the enforce-
ment of the wait by the execution algorithm ensures that B is
not executed before y— v after A. Thus, the upper bound prop-
agated along BCwillbe Tg+v 2 (Ta+y—v)y+v=Ta+y
so AC is not squeezed. O

Theorem 1 Dynamic Controllability can be determined in
deterministic polynomial time.

Proof: Lemmas 2 and 3 demonstrate that the execution al-
gorithm successfully executes networks that are verified by
the checking algorithm. Thus, the Dynamic Controllability
checking algorithm is complete. It is also still sound since
the added wait constraints were derived from the assumption
of Dynamic Controllability.

The individual tightenings are clearly polynomial, and con-
vergence is assured because the domains of the constraints
are strictly reduced by the tightenings. The only issue is how
long the convergence takes. A crude upper bound can be ob-
tained by assuming a fixed level of precision with respect to
the numerical bounds. In that case the time required will vary
according to the product of the number of constraints and the
size of the largest domain, which grows polynomially with
the size of the problem. O

It is worth pointing out that the execution algorithm pre-
sented here preserves maximum flexibility, since the addi-
tional tightenings and waits were all required by Dynamic
Controllability. In other words there is no need to overcon-
strain the plan for instance by adding waypoints [Morris and
Muscettola, 1999]. Moreover, we have actually proven that
just picking up arbitrarily a time for executing an executable
timepoint within allowed points was enough to guarantee suc-
cess of the dynamic strategy. Therefore the incremental ap-
plication of the DC propagation ensures that the values left in
the domains are all consistent with the dynamic strategy. In
other words we have proven that the DC checking algorithm
provides us with the minimal network.

7 Conclusions

Dynamic Controllability is polynomial! That is certainly the
main contribution of this paper, since this property, needed in
many real-world applications such as planning and schedul-
ing, was expected to be much harder.

Moreover, the proposed method is directly applicable to
the STNU (as opposed to a previous technique that needed a

translation into 4 tinite-state automaton model [Vidal, 20001,
and is very similar to clasical constraint satistaction tech-
niques. We have shown that a tocal Dynamic Controllability
algorithm based on triangle reductions can be defined in the
spirit of clasical path-consistency algorithms, and that aon-
binary constraints that were inherent in the problem give rise
to binary constraints through a regression process. We have
also proven this [ocal controllability algorithm is complete
with respect to Dynamic Controllability of the global net-
work.

We believe our contribution will be valuable in the design
of new constraint programming packages handling temporal
uncertainty, and will help pave the way to effective real-time
plan execution systems that incorporate such uncertainties.

References

[Cormen et al., 1990] TH. Cormen, C.E. Leiserson, and
R.L. Rivest. Introduction to Algorithms. MIT press, Cam-
bridge, MA, 1990.

[Dechter er al., 1991] R. Dechter, I. Meiri, and J. Pearl. Tem-
poral constraint networks. Artificial Intelligence, 49:61-
95, May 1991.

{Morris and Muscettola, 1999] P. Morris and N. Muscettola.
Managing temporal uncertainty through waypoint control-
lability. In Proc. of Sixteenth Int. Joint Conf. on Artificial
Intelligence (IJCAI-99), 1999,

[Morris and Muscettola, 2000] P. Morris and N. Muscettola.
Execution of temporal plans with uncertainty. In Proc.
of Seventeenth Nar. Conf. on Artificial Intelligence (AAAl-
00}, 2000.

{Muscettola ez al., 1998a] N. Muscettola, P. Morris, and
I. Tsamardinos. Reformulating temporal plans for efficient
execution. In Proc. of Sixth Int. Conf on Principles of
Knowledge Representation and Reasoning (KR'98), 1998.

[Muscettola er al., 1998b] N. Muscettola, PP Nayak,
B. Pell, and B.C. Williams. Remote agent: to boldly
go where no Al system has gone before. Arrificial
Intelligence, 103(1-2):5-48, August [993.

[P.Laborie and Ghallab, 1995] P.Laborie and M. Ghallab.
Planning with sharable constraints. In Proceedings of the
14th International Joint Conference on A.l. (IJCAL-95),
Montreal (Canada), 1995.

[Vidal and Fargier, 1999] T. Vidal and H. Fargier. Handling
contingency in temporal constraint networks: from con-
sistency to controllabilities. Journal of Experimental &
Theoretical Artificial Intelligence, 11:23-45, 1999.

[Vidal and Ghallab, 1996] T. Vidal and M. Ghallab. Dealing
with uncertain durations in temporal constraint networks
dedicated to planning. In Proc. of [2th European Con-
ference on Artificial Intelligence (ECAI-96), pages 48-52,
1996.

[Vidal, 2000] T. Vidal. Controllability characterization and
checking in contingent temporal constraint networks. In
Proc. of Seventh Int. Conf on Principles of Knowledge
Representation and Reasoning (KR'2000), 2000.

